If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x+75x^2=0
a = 75; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·75·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*75}=\frac{-60}{150} =-2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*75}=\frac{0}{150} =0 $
| 2x+7+3x-9=x | | x=(-3/2)x+14 | | 3(2x-3)-5=3(x-2)-2 | | 9-(x-5)=2(x+8) | | 2/3a+1/2=3.50 | | 4x+1+21x-5=90 | | 9-1(x-5)=2(x+8) | | 7/17=2x+3/34 | | 4x+1=21x-5 | | -5x9x=-6 | | (4x+2x)=90 | | 40n^2-285n-280=0 | | -7/12(4x-24)=168 | | 138=7h/5 | | 8x2-100=0 | | 4+-6x=4 | | 4(4z+1)-9=139 | | 5-2(x-1=12 | | 5y+6y-81=74=+102+654 | | 3a+2a=11 | | j/5+8=12 | | 2/3+3/7x=-5/21 | | 49=34-3(x-3) | | -(4x-5)-(9x-5)+7=-11(x-1)-(5x+12)+3 | | 56=8u/7 | | 5x÷2-12=8 | | -14.2=-4.2g=6.8 | | 4(6x+4)=40 | | 44x=92x | | (10x-26)=180 | | 8x+9-12x=4x=4x=15=5x | | 2/3+3x/7=-5/21 |